Introduction à la modélisation Mathématique EDOs et Dynamique des populations

Fanny Delebecque

Institut de Mathématiques de Toulouse - Université Toulouse 3

25 janvier 2018

Modéliser l'évolution d'une population...

Un peu d'histoire : Euler (1760) Recherches générales sur la mortalité et la multiplication du genre humain

But : Calculer/prévoir l'évolution de la population d'une ville ou d'une province pour une certaine année.

Euler (1760)

Si p_n représente la population à l'année n, Euler propose une relation de récurrence $p_{n+1} = \lambda p_n$, ce qui conduit à une suite géométrique, λ représentant le taux d'évolution de la population.

À noter : On peut aussi adopter une représentation en temps continu grâce à une équation différentielle

$$p(t + \Delta_t) - p(t) = \lambda p(t) \Delta_t$$

qui conduit à l'équation différentielle $p'(t) = \lambda p(t)$.

Modéliser l'évolution d'une population...

Un peu d'histoire : Malthus (1798)

Modélisation de la population humaine par une suite géométrique tandis que la capacité de reproduction est une suite arithmétique.

Proposition de limitation des naissances!!!

Un peu d'histoire : Verhulst (1840)

Remise en question du modèle de croisance malthusienne pour le modèle logistique : *Prise en compte de la limitation de la population*.

Idée:

- \bullet Accroissement de population proportionnel à la population pour des petites valeurs (\sim Malthus)
- Facteur limitant quand la population devient grande.

1837 : prévision de la population française en 1930 : 40 millions (en fait, 41,5 en 1931... pas loin!).

Modéliser l'évolution d'une population...

Aujourd'hui : modèle de croissance logistique de Verhulst encore très utilisé (en biologie, démographie, médecine...)

2 modèles logistiques :

- modèle logistique discret : suite p_n à l'année n, (variable discrète)
- modèle logistique continu : la population est une fonction du temps (variable continue)

Modèle continu : équation différentielle que l'on sait résoudre, comportement connu

Modèle discret : grande variabilité des comportement quand les valeurs des paramètres varient (comportement chaotique?)

Quelques exemples de modèles plus complexes...

Étude de populations en intéraction :

- Étude des populations de Lynx et de lièvres des neiges collectées par La Compagnie de la baie d'Hudson au XIX^{eme} siècle.
- Alfred James Lotka (1925), Vito Volterra (1926) puis appliqué au sommeil paradoxal modèle AIM (Allan Hobson, 1990-98)
- Beaucoup de raffinements et de dérivés : proie-prédateur, compétition, symbiose, modèles de pêche, modèles avec migration, modèles de populations structurées, études de génomie, modèles d'épidémiologie

- 1 Équations différentielles ordinaires, rappels, exemples
 - C'est quoi une EDO? Exemples...
 - Vocabulaire / Définitions / Résultats principaux
 - Comportements possibles d'équations différentielles autonomes
- 2 Dynamique des populations
 - Modélisation de la dynamique d'une population
 - Populations en interaction
 - Épidémies
- Simulations Numériques
 - Construction des méthodes numériques
 - Convergence des Méthodes numériques
 - Simulations numériques pour le système de Volterra Lotka

C'est quoi une EDO d'ordre 1?

C'est une équation qui relie une fonction et sa dérivée et dont la solution est une fonction dérivable.

Formalisme: y'(t) = F(t, y(t)) où F est une fonction de \mathbb{R}^2 dans \mathbb{R} .

Solution de y'(t) = F(t, y(t)) **sur un intervalle** I: fonction dérivable y sur I telle que

$$\forall t \in I, \ y'(t) = F(t, y(t)).$$

C'est quoi une EDO d'ordre 1?

C'est une équation qui relie une fonction et sa dérivée et dont la solution est une fonction dérivable.

Formalisme: y'(t) = F(t, y(t)) où F est une fonction de \mathbb{R}^2 dans \mathbb{R} .

Solution de y'(t) = F(t, y(t)) **sur un intervalle** I: fonction dérivable y sur I telle que

$$\forall t \in I, \ y'(t) = F(t, y(t)).$$

Quelques exemples:

• linéaires du 1er ordre à coefficients constants :

$$y'(t) + ay(t) = b, \ a, b \in \mathbb{R}$$

Solution de l'eq. homogène $(b=0): y_H(t)=Ke^{-at}, K\in\mathbb{R}.$

Solution particulière y_p de y'(t) + ay(t) = b, (astucieuse ou obtenue par la variation de la constante)

Solution générale de y'(t)+ay(t)=b : superposition de y_H et y_p :

$$y(t) = y_H(t) + y_p(t).$$

Exemple : $y'(t) + y(t) = 4t^2$.

C'est quoi une EDO d'ordre 1?

Quelques exemples:

- linéaire à coefficients variables : y'(t) + a(t)y(t) = b(t), Solution de l'eq homogène : $y(t) = Ke^{A(t)}$ où A est une primitive de a et $K \in \mathbb{R}$.
 - Solution particulière y_p
 - Solution générale : superposition de y_H et y_p : $y(t) = y_H(t) + y_p(t)$.
 - **Exemple** : $y'(t) + 5ty(t) = e^{t}$
- une équation non linéaire... : $y'(t) = y(t)^2 + 5t...$ Là c'est plus compliqué...
- EDO autonome : équation différentielle y'(t) = F(y(t)). La fonction F ne dépend pas de t, mais seulement de y(t).

"Problème de Cauchy"

<u>Cadre</u>: I intervalle ouvert de \mathbb{R} , $F: I \times \mathbb{R} \to \mathbb{R}$ continue

"Problème de Cauchy"

<u>Cadre</u> : I intervalle ouvert de \mathbb{R} , $F: I \times \mathbb{R} \to \mathbb{R}$ continue

<u>Données initiales</u> : temps intial $t_0 \in I$ (on prendra $t_0 = 0$), donnée initiale

 $y_0 \in \mathbb{R}$

"Problème de Cauchy"

<u>Cadre</u>: I intervalle ouvert de \mathbb{R} , $F: I \times \mathbb{R} \to \mathbb{R}$ continue

<u>Données initiales</u> : temps intial $t_0 \in I$ (on prendra $t_0 = 0$), donnée initiale $y_0 \in \mathbb{R}$

<u>Problème</u> : Trouver $J \subset I$ intervalle contenant 0 et $y: J \to \mathbb{R}$ fonction dérivable sur J telle que :

$$\begin{cases} y'(t) = F(t, y(t)) & \forall t \in J, \\ y(0) = y_0. \end{cases}$$
 (1)

"Problème de Cauchy"

<u>Cadre</u>: I intervalle ouvert de \mathbb{R} , $F: I \times \mathbb{R} \to \mathbb{R}$ continue

<u>Données initiales</u> : temps intial $t_0 \in I$ (on prendra $t_0 = 0$), donnée initiale $y_0 \in \mathbb{R}$

<u>Problème</u> : Trouver $J \subset I$ intervalle contenant 0 et $y: J \to \mathbb{R}$ fonction dérivable sur J telle que :

$$\begin{cases} y'(t) = F(t, y(t)) & \forall t \in J, \\ y(0) = y_0. \end{cases}$$
 (1)

Définitions

Solution locale : (J, y) est solution locale si (J, y) est solution du problème de Cauchy (1) et J voisinage de 0 dans I.

"Problème de Cauchy"

<u>Cadre</u>: I intervalle ouvert de \mathbb{R} , $F: I \times \mathbb{R} \to \mathbb{R}$ continue

<u>Données initiales</u> : temps intial $t_0 \in I$ (on prendra $t_0 = 0$), donnée initiale $y_0 \in \mathbb{R}$

<u>Problème</u> : Trouver $J \subset I$ intervalle contenant 0 et $y: J \to \mathbb{R}$ fonction dérivable sur J telle que :

$$\begin{cases} y'(t) = F(t, y(t)) & \forall t \in J, \\ y(0) = y_0. \end{cases}$$
 (1)

Définitions

Solution locale : (J, y) est solution locale si (J, y) est solution du problème de Cauchy (1) et J voisinage de 0 dans I.

Solution maximale : Une solution locale (J, y) est dite maximale si elle ne peut pas être étendue comme solution sur un intervalle plus grand que J.

Théorème de Cauchy-Lipschitz (cas C^1)

On suppose que f est continue par rapport à la première variable et \mathcal{C}^1 par rapport à la deuxième.

Théorème de Cauchy-Lipschitz (cas C^1)

On suppose que f est continue par rapport à la première variable et \mathcal{C}^1 par rapport à la deuxième.

Alors il existe une unique solution maximale (J, y) du problème de Cauchy (1) et J est de la forme J = [0, T[.

Théorème de Cauchy-Lipschitz (cas C^1)

On suppose que f est continue par rapport à la première variable et \mathcal{C}^1 par rapport à la deuxième.

Alors il existe une unique solution maximale (J, y) du problème de Cauchy (1) et J est de la forme J = [0, T[.

On a de plus l'alternative d'explosion en temps fini suivante :

$$\begin{cases} T < +\infty & \text{ou} \quad T = +\infty \\ \lim_{t \to T} |y(t)| = +\infty. \end{cases}$$
 (2)

Théorème de Cauchy-Lipschitz (cas C^1)

On suppose que f est continue par rapport à la première variable et \mathcal{C}^1 par rapport à la deuxième.

Alors il existe une unique solution maximale (J, y) du problème de Cauchy (1) et J est de la forme J = [0, T[.

On a de plus l'alternative d'explosion en temps fini suivante :

$$\begin{cases} T < +\infty & \text{ou} \quad T = +\infty \\ \lim_{t \to T} |y(t)| = +\infty. \end{cases}$$
 (2)

Remarque 1: T est appelé temps d'existence de la solution maximale.

Théorème de Cauchy-Lipschitz (cas C^1)

On suppose que f est continue par rapport à la première variable et \mathcal{C}^1 par rapport à la deuxième.

Alors il existe une unique solution maximale (J, y) du problème de Cauchy (1) et J est de la forme J = [0, T[.

On a de plus l'alternative d'explosion en temps fini suivante :

$$\begin{cases} T < +\infty & \text{ou} \quad T = +\infty \\ \lim_{t \to T} |y(t)| = +\infty. \end{cases}$$
 (2)

Remarque 1:T est appelé $temps\ d'existence$ de la solution maximale.

Remarque 2 : Si $T = +\infty$, on dit que la solution maximale est globale en temps. Dans ce cas, la solution est nécessairement bornée.

Théorème de Cauchy-Lipschitz (cas \mathcal{C}^1)

On suppose que f est continue par rapport à la première variable et \mathcal{C}^1 par rapport à la deuxième.

Alors il existe une unique solution maximale (J, y) du problème de Cauchy (1) et J est de la forme J = [0, T[.

On a de plus l'alternative d'explosion en temps fini suivante :

$$\begin{cases} T < +\infty & \text{ou} \quad T = +\infty \\ \lim_{t \to T} |y(t)| = +\infty. \end{cases}$$
 (3)

Théorème de Cauchy-Lipschitz (cas \mathcal{C}^1)

On suppose que f est continue par rapport à la première variable et \mathcal{C}^1 par rapport à la deuxième.

Alors il existe une unique solution maximale (J, y) du problème de Cauchy (1) et J est de la forme J = [0, T[.

On a de plus *l'alternative d'explosion en temps fini* suivante :

$$\begin{cases} T < +\infty & \text{ou} \quad T = +\infty \\ \lim_{t \to T} |y(t)| = +\infty. \end{cases}$$
 (3)

Remarque 3 : Deux solutions distinctes du probeème de Cauchy (i.e pour deux données initiales différentes) ne peuvent **jamais prendre les mêmes valeurs**.

Autrement dit : si y,z solutions de (1) sur un intervalle J telles que $y_0 \neq z_0$ alors

$$\forall t \in J, \ y(t) \neq z(t).$$

- 1 Équations différentielles ordinaires, rappels, exemples
 - C'est quoi une EDO? Exemples...
 - Vocabulaire / Définitions / Résultats principaux
 - Comportements possibles d'équations différentielles autonomes
- Dynamique des populations
 - Modélisation de la dynamique d'une population
 - Populations en interaction
 - Épidémies
- Simulations Numériques
 - Construction des méthodes numériques
 - Convergence des Méthodes numériques
 - Simulations numériques pour le système de Volterra Lotka

Comportements possibles:

• Solution constante, $y(t) = y^*$. Nécessairement, y^* vérifie $f(y^*) = 0$. Cela nécessite bien sûr $y_0 = y^*$.

Comportements possibles:

- Solution constante, $y(t) = y^*$. Nécessairement, y^* vérifie $f(y^*) = 0$. Cela nécessite bien sûr $y_0 = y^*$.
- Existence globale et convergence vers un équilibre "stable" y* :

$$f(y^*) = 0$$
 et $y(t) \xrightarrow[t \to +\infty]{} y^*$.

Comportements possibles:

- Solution constante, $y(t) = y^*$. Nécessairement, y^* vérifie $f(y^*) = 0$. Cela nécessite bien sûr $y_0 = y^*$.
- Existence globale et convergence vers un équilibre "stable" y^* :

$$f(y^*) = 0$$
 et $y(t) \xrightarrow[t \to +\infty]{} y^*$.

• Explosion en temps fini : réaction "autocatalysée"

Comportements possibles:

- Solution constante, $y(t) = y^*$. Nécessairement, y^* vérifie $f(y^*) = 0$. Cela nécessite bien sûr $y_0 = y^*$.
- Existence globale et convergence vers un équilibre "stable" y^* :

$$f(y^*) = 0$$
 et $y(t) \underset{t \to +\infty}{\longrightarrow} y^*$.

• Explosion en temps fini : réaction "autocatalysée" Exemple : $y'(t) = y(t)^2$, Solution en : $\frac{1}{T_0 - t}$.

Comportements possibles:

- Solution constante, $y(t) = y^*$. Nécessairement, y^* vérifie $f(y^*) = 0$. Cela nécessite bien sûr $y_0 = y^*$.
- Existence globale et convergence vers un équilibre "stable" y^* :

$$f(y^*) = 0$$
 et $y(t) \xrightarrow[t \to +\infty]{} y^*$.

• Explosion en temps fini : réaction "autocatalysée" Exemple : $y'(t) = y(t)^2$, Solution en : $\frac{1}{T_0 - t}$.

NB: Pas de solution périodique non constante pour une EDO scalaire!

<u>Cadre</u>: système autonome de 2 EDOs scalaires. Soient $f,g: \mathbb{R}^2 \to \mathbb{R}$.

$$\begin{cases} x'(t) = f(x(t), y(t)) \\ y'(t) = g(x(t), y(t)) \end{cases}$$

<u>Cadre</u>: système autonome de 2 EDOs scalaires. Soient $f,g: \mathbb{R}^2 \to \mathbb{R}$.

$$\begin{cases} x'(t) = f(x(t), y(t)) \\ y'(t) = g(x(t), y(t)) \end{cases}$$

Comportements possibles:

• Explosion en temps fini

<u>Cadre</u>: système autonome de 2 EDOs scalaires. Soient $f, g : \mathbb{R}^2 \to \mathbb{R}$.

$$\begin{cases} x'(t) = f(x(t), y(t)) \\ y'(t) = g(x(t), y(t)) \end{cases}$$

Comportements possibles:

- Explosion en temps fini
- Solution constante

$$x(t) = x^*, y(t) = y^*$$
 où $f(x^*, y^*) = g(x^*, y^*) = 0$.

<u>Cadre</u>: système autonome de 2 EDOs scalaires. Soient $f, g : \mathbb{R}^2 \to \mathbb{R}$.

$$\begin{cases} x'(t) = f(x(t), y(t)) \\ y'(t) = g(x(t), y(t)) \end{cases}$$

Comportements possibles:

- Explosion en temps fini
- Solution constante

$$x(t) = x^*, y(t) = y^*$$
 où $f(x^*, y^*) = g(x^*, y^*) = 0.$

• Solutions globales et convergence vers un équilibre (x^*, y^*) stable : $(x(t), y(t)) \xrightarrow[x \to +\infty]{} (x^*, y^*)$, avec $f(x^*, y^*) = g(x^*, y^*) = 0$

<u>Cadre</u>: système autonome de 2 EDOs scalaires. Soient $f, g : \mathbb{R}^2 \to \mathbb{R}$.

$$\begin{cases} x'(t) = f(x(t), y(t)) \\ y'(t) = g(x(t), y(t)) \end{cases}$$

Comportements possibles:

- Explosion en temps fini
- Solution constante

$$x(t) = x^*, y(t) = y^*$$
 où $f(x^*, y^*) = g(x^*, y^*) = 0$.

- Solutions globales et convergence vers un équilibre (x^*, y^*) stable : $(x(t), y(t)) \xrightarrow[t \to +\infty]{} (x^*, y^*)$, avec $f(x^*, y^*) = g(x^*, y^*) = 0$
- Convergence vers une solution périodique.

Exemple de convergence vers une solution périodique

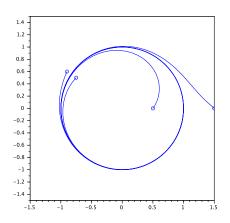
Exemple de convergence vers une solution périodique stable :

$$\begin{cases} x' = (1 - x^2 - y^2)x - y \\ y' = (1 - x^2 - y^2)y + x. \end{cases}$$
 sol périodique : $x(t)^2 + y(t)^2 = 1$

Exemple de convergence vers une solution périodique

Exemple de convergence vers une solution périodique stable :

$$\begin{cases} x' = (1 - x^2 - y^2)x - y \\ y' = (1 - x^2 - y^2)y + x. \end{cases}$$
 sol périodique : $x(t)^2 + y(t)^2 = 1$



Système de 2 EDOs linéaires

Le cas de deux EDOs linéaires à coeff constants :

$$\begin{cases} x'(t) = ax(t) + by(t) \\ y'(t) = cx(t) + dy(t). \end{cases}$$
 où : $a, b, c, d \in \mathbb{R}$

Système de 2 EDOs linéaires

Le cas de deux EDOs linéaires à coeff constants :

$$\begin{cases} x'(t) = ax(t) + by(t) \\ y'(t) = cx(t) + dy(t). \end{cases}$$
 où : $a, b, c, d \in \mathbb{R}$

Solution explicite : $x(t), y(t) = \alpha_1 e^{\lambda_1 t} + \alpha_2 e^{\lambda_2 t}$

où λ_1 et λ_2 sont appelées *valeurs propres* de la matrice $M=\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$.

Ce sont des réels tels que $M - \lambda I_2$ n'est pas inversible.

Le cas de deux EDOs linéaires à coeff constants :

$$\begin{cases} x'(t) = ax(t) + by(t) \\ y'(t) = cx(t) + dy(t). \end{cases}$$
 où : $a, b, c, d \in \mathbb{R}$

Solution explicite : $x(t), y(t) = \alpha_1 e^{\lambda_1 t} + \alpha_2 e^{\lambda_2 t}$

où λ_1 et λ_2 sont appelées *valeurs propres* de la matrice $M=\left(\begin{array}{cc}a&b\\c&d\end{array}\right)$.

Ce sont des réels tels que $M - \lambda I_2$ n'est pas inversible.

Le cas de deux EDOs linéaires à coeff constants :

$$\begin{cases} x'(t) = ax(t) + by(t) \\ y'(t) = cx(t) + dy(t). \end{cases}$$
 où : $a, b, c, d \in \mathbb{R}$

Solution explicite : $x(t), y(t) = \alpha_1 e^{\lambda_1 t} + \alpha_2 e^{\lambda_2 t}$

où λ_1 et λ_2 sont appelées *valeurs propres* de la matrice $M=\left(\begin{array}{cc}a&b\\c&d\end{array}\right)$.

Ce sont des réels tels que $M - \lambda I_2$ n'est pas inversible.

<u>Comportement</u>: Dépend des signes des parties réelles de λ_1 et λ_2 .

• Si $\Re(\lambda_i) > 0$ pour i = 1 ou i = 2, **explosion**

Le cas de deux EDOs linéaires à coeff constants :

$$\begin{cases} x'(t) = ax(t) + by(t) \\ y'(t) = cx(t) + dy(t). \end{cases}$$
 où : $a, b, c, d \in \mathbb{R}$

Solution explicite : $x(t), y(t) = \alpha_1 e^{\lambda_1 t} + \alpha_2 e^{\lambda_2 t}$

où λ_1 et λ_2 sont appelées *valeurs propres* de la matrice $M=\left(\begin{array}{cc}a&b\\c&d\end{array}\right)$.

Ce sont des réels tels que $M-\lambda I_2$ n'est pas inversible.

- Si $\Re(\lambda_i) > 0$ pour i = 1 ou i = 2, **explosion**
- Si $\Re e(\lambda_i) < 0$ pour i = 1 ET i = 2, convergence vers (0,0)

Le cas de deux EDOs linéaires à coeff constants :

$$\begin{cases} x'(t) = ax(t) + by(t) \\ y'(t) = cx(t) + dy(t). \end{cases}$$
 où : $a, b, c, d \in \mathbb{R}$

Solution explicite : $x(t), y(t) = \alpha_1 e^{\lambda_1 t} + \alpha_2 e^{\lambda_2 t}$

où λ_1 et λ_2 sont appelées *valeurs propres* de la matrice $M=\left(\begin{array}{cc}a&b\\c&d\end{array}\right)$.

Ce sont des réels tels que $M - \lambda I_2$ n'est pas inversible.

- Si $\Re(\lambda_i) > 0$ pour i = 1 ou i = 2, **explosion**
- Si $\Re(\lambda_i)$ < 0 pour i = 1 ET i = 2, convergence vers (0,0)
- Si $\Re(\lambda_i) = 0$ pour i = 1 ET i = 2 plusieurs possibilités dont la convergence vers une solution périodique

Le cas de deux EDOs linéaires à coeff constants :

$$\begin{cases} x'(t) = ax(t) + by(t) \\ y'(t) = cx(t) + dy(t). \end{cases}$$
 où : $a, b, c, d \in \mathbb{R}$

Solution explicite : $x(t), y(t) = \alpha_1 e^{\lambda_1 t} + \alpha_2 e^{\lambda_2 t}$

où λ_1 et λ_2 sont appelées *valeurs propres* de la matrice $M=\left(\begin{array}{cc}a&b\\c&d\end{array}\right)$.

Ce sont des réels tels que $M - \lambda I_2$ n'est pas inversible.

- Si $\Re(\lambda_i) > 0$ pour i = 1 ou i = 2, **explosion**
- Si $Re(\lambda_i) < 0$ pour i = 1 ET i = 2, convergence vers (0,0)
- Si $\Re(\lambda_i) = 0$ pour i = 1 ET i = 2 plusieurs possibilités dont la convergence vers une solution périodique
- (0,0) solution constante.

Cas système 3 EDOs autonomes :

Exemple de chaos : le système de Lorentz

Cas système 3 EDOs autonomes :

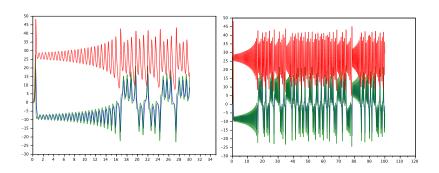
Exemple de chaos : le système de Lorentz

$$\begin{cases} x'(t) = s(y(t) - x(t)) \\ y'(t) = rx(t) - y(t) - x(t)z(t) & \text{où : } s = 10, \ r = 28, \ b = 8/3. \\ z'(t) = x(t)y(t) - bz(t). \end{cases}$$

Cas système 3 EDOs autonomes :

Exemple de chaos : le système de Lorentz

$$\begin{cases} x'(t) = s(y(t) - x(t)) \\ y'(t) = rx(t) - y(t) - x(t)z(t) & \text{où } : s = 10, \ r = 28, \ b = 8/3. \\ z'(t) = x(t)y(t) - bz(t). \end{cases}$$



Cas système 4 EDOs autonome :

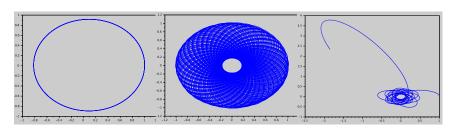
Exemple de chaos : le problème à 2 corps, $\mathbf{q}(t) \in \mathbb{R}^2$

$$\mathbf{q}''(t) = -\frac{\mu \mathbf{q}}{\|\mathbf{q}\|^3} \qquad \Leftrightarrow \begin{cases} q_i'(t) = p_i(t), & i = 1, 2 \\ p_i'(t) = \frac{-\mu q_i(t)}{(q_1(t)^2 + q_2(t)^2 + q_3(t)^2)^{3/2}} & i = 1, 2 \end{cases}$$

Cas système 4 EDOs autonome :

Exemple de chaos : le problème à 2 corps, $\mathbf{q}(t) \in \mathbb{R}^2$

$$\mathbf{q}''(t) = -\frac{\mu \mathbf{q}}{\|\mathbf{q}\|^3} \Leftrightarrow \begin{cases} q_i'(t) = p_i(t), & i = 1, 2\\ p_i'(t) = \frac{-\mu q_i(t)}{(q_1(t)^2 + q_2(t)^2 + q_3(t)^2)^{3/2}} & i = 1, 2 \end{cases}$$



"Prédire" le comportement d'une solution d'un système de 2 FDOs?

<u>Prédire le comportement qualitatif des solutions</u> : Pour cela, on utilise une représentation *dans le plan de phase*.

Considérons le système d'EDOs suivant de données initiales (x_0, y_0) :

$$\begin{cases} x'(t) = f(x(t), y(t)), \\ y'(t) = g(x(t), y(t)), \end{cases}$$

"Prédire" le comportement d'une solution d'un système de 2 FDOs?

<u>Prédire le comportement qualitatif des solutions</u> : Pour cela, on utilise une représentation *dans le plan de phase*.

Considérons le système d'EDOs suivant de données initiales (x_0, y_0) :

$$\begin{cases} x'(t) = f(x(t), y(t)), \\ y'(t) = g(x(t), y(t)), \end{cases}$$

On trace les solutions dans le plan de phase en traçant la courbe paramétrée définie par $(x(t), y(t)), t \in [0, T]$.

"Prédire" le comportement d'une solution d'un système de 2 EDOs?

<u>Prédire le comportement qualitatif des solutions</u> : Pour cela, on utilise une représentation *dans le plan de phase*.

Considérons le système d'EDOs suivant de données initiales (x_0, y_0) :

$$\begin{cases} x'(t) = f(x(t), y(t)), \\ y'(t) = g(x(t), y(t)), \end{cases}$$

On trace les solutions dans le plan de phase en traçant la courbe paramétrée définie par $(x(t), y(t)), t \in [0, T]$.

En traçant en chaque point (x,y) le vecteur de coordonées $(f(x,y) \mid g(x,y))$, on connait en chaque point la tangente à la trajectoire et on peut donc tracer "à la main" les solutions et "voir" leur allure.

- 1 Équations différentielles ordinaires, rappels, exemples
 - C'est quoi une EDO? Exemples...
 - Vocabulaire / Définitions / Résultats principaux
 - Comportements possibles d'équations différentielles autonomes
- Dynamique des populations
 - Modélisation de la dynamique d'une population
 - Populations en interaction
 - Épidémies
- Simulations Numériques
 - Construction des méthodes numériques
 - Convergence des Méthodes numériques
 - Simulations numériques pour le système de Volterra Lotka

Ce que l'on veut modéliser : y(t) : nombre d'individus au temps t.

Ce que l'on veut modéliser : y(t) : nombre d'individus au temps t.

Pour obtenir une fonction "dérivable" : on adimensionne par une population de référence y_0 "grande".

Ce que l'on veut modéliser : y(t) : nombre d'individus au temps t.

Pour obtenir une fonction "dérivable" : on adimensionne par une population de référence y_0 "grande".

Evolution de y: y'(t) = Naissance - Décès

Ce que l'on veut modéliser : y(t) : nombre d'individus au temps t.

Pour obtenir une fonction "dérivable" : on adimensionne par une population de référence y_0 "grande".

Evolution de y: y'(t) = Naissance - Décès

Processus de modélisation :

• Hypothèses sur la reproduction / mortalité

Ce que l'on veut modéliser : y(t) : nombre d'individus au temps t.

Pour obtenir une fonction "dérivable" : on adimensionne par une population de référence y_0 "grande".

Evolution de y: y'(t) = Naissance - Décès

Processus de modélisation :

- Hypothèses sur la reproduction / mortalité
- Mise en équation
- Analyse mathématique du problème, propriétés et retour au modèle

Ce que l'on veut modéliser : y(t) : nombre d'individus au temps t.

Pour obtenir une fonction "dérivable" : on adimensionne par une population de référence y_0 "grande".

Evolution de y: y'(t) = Naissance - Décès

Processus de modélisation :

- Hypothèses sur la reproduction / mortalité
- Mise en équation
- Analyse mathématique du problème, propriétés et retour au modèle
- Simulations numériques

Ce que l'on veut modéliser : y(t) : nombre d'individus au temps t.

Pour obtenir une fonction "dérivable" : on adimensionne par une population de référence y_0 "grande".

Evolution de y: y'(t) = Naissance - Décès

Processus de modélisation :

- Hypothèses sur la reproduction / mortalité
- Mise en équation
- Analyse mathématique du problème, propriétés et retour au modèle
- Simulations numériques
- Discussion, pertinence/enrichissement du modèle?

<u>Hypothèses</u>: Nombre de naissances et de décès *proportionnels à la* $\overline{population}$ (taux respectifs a et b)

Modèle de Malthus : y'(t) = (a - b)y(t), a, b > 0

Propriétés

 $\frac{\text{Hypothèses}}{\text{population}}$: Nombre de naissances et de décès proportionnels à la population (taux respectifs a et b)

Modèle de Malthus : y'(t) = (a - b)y(t), a, b > 0

Propriétés

Résolution : $y(t) = y_0 e^{(a-b)t}$.

 $\overline{\text{Hypothèses}}$: Nombre de naissances et de décès proportionnels à la $\overline{\text{population}}(\text{taux respectifs a et }b)$

 $\underline{\mathsf{Modèle}}\ \mathsf{de}\ \mathsf{Malthus}\ \colon y'(t) = (a-b)y(t),\quad a,b>0$

Propriétés

Résolution : $y(t) = y_0 e^{(a-b)t}$.

Comportement:

- si a > b croissance exponentielle de la population
- si a < b, décroissance exponentielle de la population

 $\overline{\text{Hypothèses}}$: Nombre de naissances et de décès proportionnels à la $\overline{\text{population}}(\text{taux respectifs a et }b)$

Modèle de Malthus : y'(t) = (a - b)y(t), a, b > 0

Propriétés

Résolution : $y(t) = y_0 e^{(a-b)t}$.

Comportement:

- si a > b croissance exponentielle de la population
- si a < b, décroissance exponentielle de la population

Discussion

- Simple à mettre en oeuvre
- Mais Croissance exponentielle non réaliste : limitation dues au milieu ambiant

 $\frac{\text{Hypothèses}: \text{Nombre de naissances et de décès } \textit{proportionnels à la } \textit{population}(\text{taux respectifs } \textit{a et } \textit{b})$

Modèle de Malthus : y'(t) = (a - b)y(t), a, b > 0

Propriétés

Résolution : $y(t) = y_0 e^{(a-b)t}$.

Comportement:

- si a > b croissance exponentielle de la population
- si a < b, décroissance exponentielle de la population

Discussion:

- Simple à mettre en oeuvre
- Mais Croissance exponentielle non réaliste : limitation dues au milieu ambiant
- \implies Il faut faire dépendre a et b de y(t) pour avoir un comportement plus réaliste : limitation de la croissance

Les nouvelles hypothèses : Le milieu ne peut nourrir que K individus.

- Si y(t) < K, la population augmente : natalité>mortalité
- Si y(t) > K, pas assez de ressources, la population diminue
- Si $y(t) \ll K$ cas de Malthus : croissance exponentielle.

Les nouvelles hypothèses : Le milieu ne peut nourrir que K individus.

- Si y(t) < K, la population augmente : natalité>mortalité
- Si y(t) > K, pas assez de ressources, la population diminue
- Si $y(t) \ll K$ cas de Malthus : croissance exponentielle.

Mise en équations : y'(t) = F(y(t))où F vérifie :

$$\begin{cases} F(x) > 0 \text{ si } x < K, \\ F(x) < 0 \text{ si } x > K, \\ F(x) \sim cx \text{ si } x < < K. \\ F(0) = 0 \text{ pas de création spontannée d'individus} \end{cases}$$

Choix de $F: F(x) = r x(1 - \frac{x}{K}), \quad r > 0.$

Modèle de croissance logistique :
$$y'(t) = F(y(t)) = r \ y(t)(1 - \frac{y(t)}{K})$$
.

Modèle de croissance logistique :
$$y'(t) = F(y(t)) = r \ y(t)(1 - \frac{y(t)}{K})$$
. Discussion :

- Parfois F est donnée par des mesures expérimentales
- Si on connait des dynamiques de reproduction/mort, on peut parfois en déduire *F* mais il faut des hypothèses des biologistes.
- La fonction proposée est la plus simple qui vérifie les propriétés demandées.

Modèle de croissance logistique :
$$y'(t) = F(y(t)) = r \ y(t)(1 - \frac{y(t)}{K})$$
. Discussion :

- Parfois F est donnée par des mesures expérimentales
- Si on connait des dynamiques de reproduction/mort, on peut parfois en déduire *F* mais il faut des hypothèses des biologistes.
- La fonction proposée est la plus simple qui vérifie les propriétés demandées.

Signification des constantes :

- K : capacité d'accueil du milieu
- r : vitesse de croissance de la population quand y(t) << K.

Résolution du problème de croissance logistique, comportement...

On veut résoudre

$$\begin{cases} y'(t) = \alpha \left(1 - \frac{y(t)}{K}\right) y(t), \\ y(0) = y_0 > 0, \end{cases}$$

Étape 1 : on remarque que y(t) = 0 et y(t) = K sont des solutions associées aux données initiales $y_0 = 0$ et $y_0 = K$ resp.

Conséquence : Si $y_0 \notin \{0, K\}$ alors $\forall t > 0, y(t) \notin \{0, K\}$!

Étape 2 : On peut diviser par y(t)!

$$\frac{y'(t)}{(K-y(t))y(t)} = \frac{\alpha}{K}.$$

Étape 3 : On écrit un développement en élément simple de la fraction :

$$\frac{1}{y(K-y)} = \frac{1}{K} \frac{1}{y} + \frac{1}{K} \frac{1}{(K-y)}$$

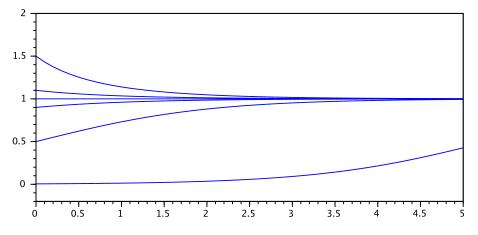


FIGURE: Evolution de la population, modèle logistique

Modèle de croissance logistique : Étude d'équilibres

Modèle de croissance logistique : $y'(t) = f(y(t)) = r \ y(t)(1 - \frac{y(t)}{K})$.

Modèle de croissance logistique : Étude d'équilibres

Modèle de croissance logistique :
$$y'(t) = f(y(t)) = r \ y(t)(1 - \frac{y(t)}{K})$$
.

Équilibres : y^* tels que $f(y^*) = 0$ (ici, $y^* \in \{0, K\}$).

Modèle de croissance logistique : Étude d'équilibres

Modèle de croissance logistique :
$$y'(t) = f(y(t)) = r \ y(t)(1 - \frac{y(t)}{K})$$
.

Équilibres : y^* tels que $f(y^*) = 0$ (ici, $y^* \in \{0, K\}$).

Notion de stabilité : partant "proche de y^* ",

- Équilibre stable : après une petite perturbation, retour à l'équilibre y^*
- équilibre instable : une petite perturbation déstabilise le système.

Modèle de croissance logistique : Étude d'équilibres

Modèle de croissance logistique :
$$y'(t) = f(y(t)) = r \ y(t)(1 - \frac{y(t)}{K})$$
.

 $\underline{\text{\'e}}$ quilibres : y^* tels que $f(y^*) = 0$ (ici, $y^* \in \{0, K\}$).

Notion de stabilité : partant "proche de y^* ",

- Équilibre stable : après une petite perturbation, retour à l'équilibre y^*
- 2 Équilibre instable : une petite perturbation déstabilise le système.

Équation des petites perturbations : $y(t) = y^* + u(t)$ où

$$u' = y' = F(y(t)) = F(y^* + u(t)) = F'(y^*)u(t) + \mathcal{O}(u(t)^2) \sim F'(y^*)u(t).$$

Modèle de croissance logistique : Étude d'équilibres

Modèle de croissance logistique :
$$y'(t) = f(y(t)) = r \ y(t)(1 - \frac{y(t)}{K})$$
.

$$\underline{\text{\'e}}$$
quilibres : y^* tels que $f(y^*) = 0$ (ici, $y^* \in \{0, K\}$).

Notion de stabilité : partant "proche de y^* ",

- lacktriangle Équilibre stable : après une petite perturbation, retour à l'équilibre y^*
- 2 Équilibre instable : une petite perturbation déstabilise le système.

Équation des petites perturbations : $y(t) = y^* + u(t)$ où

$$u' = y' = F(y(t)) = F(y^* + u(t)) = F'(y^*)u(t) + \mathcal{O}(u(t)^2) \sim F'(y^*)u(t).$$

Discussion

- Si $F'(y^*) > 0$ alors y^* est un équilibre *instable*
- Si $F'(y^*) < 0$ alors y^* est un équilibre stable

Modèle de croissance logistique : Étude d'équilibres

Modèle de croissance logistique :
$$y'(t) = f(y(t)) = r \ y(t)(1 - \frac{y(t)}{K})$$
.

$$\underline{\text{\'e}}$$
quilibres : y^* tels que $f(y^*) = 0$ (ici, $y^* \in \{0, K\}$).

Notion de stabilité : partant "proche de y^* ",

- Équilibre stable : après une petite perturbation, retour à l'équilibre y^*
- 2 Équilibre instable : une petite perturbation déstabilise le système.

 $\underline{\mathsf{Equation}}$ des petites perturbations : $y(t) = y^* + u(t)$ où

$$u' = y' = F(y(t)) = F(y^* + u(t)) = F'(y^*)u(t) + \mathcal{O}(u(t)^2) \sim F'(y^*)u(t).$$

Discussion

- Si $F'(y^*) > 0$ alors y^* est un équilibre *instable*
- Si $F'(y^*) < 0$ alors y^* est un équilibre stable

Dans notre cas : Deux équilibres $y^* = 0$ et $y^* = K$

- F'(0) > 0 donc 0 est un équilibre *instable*
- F'(K) < 0 donc K est un équilibre stable.

Modèle de croissance logistique : Équilibres

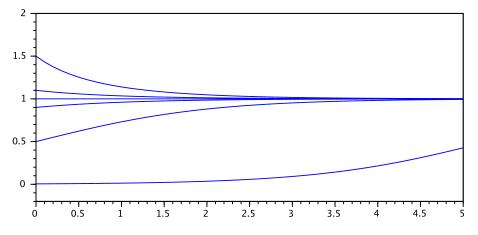


FIGURE: Evolution de la population, modèle logistique

Bernoulli et la petite vérole! (1760)

En 1760 Bernoulli s'intéresse à *l'impact de la petite vérole sur la mortalité* pour démontrer l'intérêt de l'inoculation.

Inoculation : inoculer volontairement la maladie (que l'on ne peut attraper que 2 fois) \neq vaccination

Mise en équation du problème :

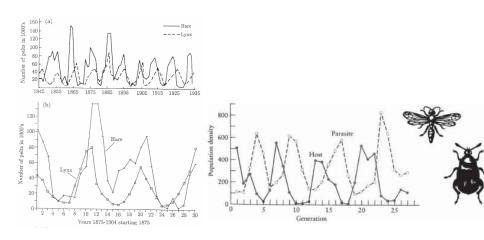
- Grandeurs d'intérêt :
 - N(t) nombre de survivants à l'instant t
 - x(t) survivants qui n'ont pas encore eu la maladie à l'instant t
- taux d'infection chez les "sains" : a
- taux de mortalité permis les malades : b
- mortalité "naturelle" : m(t)

Équation :

$$\begin{cases} x'(t) = -ax(t) - m(t)x(t), \\ N'(t) = -abx(t) - m(t)N(t), \end{cases}$$

- 1 Équations différentielles ordinaires, rappels, exemples
 - C'est quoi une EDO? Exemples...
 - Vocabulaire / Définitions / Résultats principaux
 - Comportements possibles d'équations différentielles autonomes
- Dynamique des populations
 - Modélisation de la dynamique d'une population
 - Populations en interaction
 - Épidémies
- Simulations Numériques
 - Construction des méthodes numériques
 - Convergence des Méthodes numériques
 - Simulations numériques pour le système de Volterra Lotka

Observations biologiques



 $\frac{Observations}{\longrightarrow} \ Comportement \ quasi-périodique \ des \ populations \\ \Longrightarrow \ Modélisation \ par \ un \ système \ de \ 2 \ EDOs$

<u>Cadre</u>: Deux populations Proies N(t), Prédateurs P(t).

<u>Cadre</u>: Deux populations Proies N(t), Prédateurs P(t).

Modèle de Volterra-Lotka : Hypothèses

- Naissances de proies proportionnelles à N
- Morts par prédations : proportionnelles à N et P
- Naissance de prédateurs : proportionnelles à P et à N
- Mort de prédateurs : proportionnelle à P (mort naturelle)

<u>Cadre</u>: Deux populations Proies N(t), Prédateurs P(t).

Modèle de Volterra-Lotka: Hypothèses

- Naissances de proies proportionnelles à N
- Morts par prédations : proportionnelles à N et P
- Naissance de prédateurs : proportionnelles à P et à N
- Mort de prédateurs : proportionnelle à P (mort naturelle)

Mise en équations :

$$\begin{cases} N'(t) = (a - bP)N, \\ P'(t) = (-c + dN)P. \end{cases}$$

<u>Cadre</u>: Deux populations Proies N(t), Prédateurs P(t).

Modèle de Volterra-Lotka : Hypothèses

- Naissances de proies proportionnelles à N
- ullet Morts par prédations : proportionnelles à N et P
- Naissance de prédateurs : proportionnelles à P et à N
- Mort de prédateurs : proportionnelle à P (mort naturelle)

Mise en équations :

$$\begin{cases} N'(t) = (a - bP)N, \\ P'(t) = (-c + dN)P. \end{cases}$$

Remarque : Pas de limitation des naissances de proies

<u>Cadre</u>: Deux populations Proies N(t), Prédateurs P(t).

Modèle de Volterra-Lotka : Hypothèses

- Naissances de proies proportionnelles à N
- Morts par prédations : proportionnelles à N et P
- Naissance de prédateurs : proportionnelles à P et à N
- Mort de prédateurs : proportionnelle à *P* (mort naturelle)

Mise en équations :

$$\begin{cases} N'(t) = (a - bP)N, \\ P'(t) = (-c + dN)P. \end{cases}$$

Remarque : Pas de limitation des naissances de proies Une quantité conservée : $H(P, N) = bP - a \log P + d \log N - cN$

Cadre : Deux populations Proies N(t), Prédateurs P(t).

Cadre : Deux populations Proies N(t), Prédateurs P(t).

Modèle de Volterra-Lotka amélioré : Hypothèses

- Modèle logistique pour la croissance des proies
- Morts par prédations : proportionnelles à N et P
- Naissance de prédateurs : proportionnelles à P et à N
- Mort de prédateurs : proportionnelle à P (mort naturelle)

Cadre : Deux populations Proies N(t), Prédateurs P(t).

Modèle de Volterra-Lotka amélioré : Hypothèses

- Modèle logistique pour la croissance des proies
- ullet Morts par prédations : proportionnelles à N et P
- Naissance de prédateurs : proportionnelles à P et à N
- Mort de prédateurs : proportionnelle à P (mort naturelle)

Mise en équations :

$$\begin{cases} N'(t) = N\left(a - \frac{aN}{K} - bP\right), \\ P'(t) = (-c + dN)P. \end{cases}$$

Cadre : Deux populations Proies N(t), Prédateurs P(t).

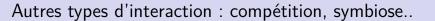
Modèle de Volterra-Lotka amélioré : Hypothèses

- Modèle logistique pour la croissance des proies
- Morts par prédations : proportionnelles à N et P
- Naissance de prédateurs : proportionnelles à P et à N
- Mort de prédateurs : proportionnelle à P (mort naturelle)

Mise en équations :

$$\begin{cases} N'(t) = N\left(a - \frac{aN}{K} - bP\right), \\ P'(t) = (-c + dN)P. \end{cases}$$

Remarque : Plus de conservation !



<u>Compétition</u>: Les espèces se gênent, les ressources sont partagées par les deux espèces.

Autres types d'interaction : compétition, symbiose..

<u>Compétition</u>: Les espèces se gênent, les ressources sont partagées par les deux espèces.

<u>Symbiose</u> : Les populations se facilitent la vie mutuellement, les ressources sont partageées par les deux espèces.

Autres types d'interaction : compétition, symbiose..

<u>Compétition</u>: Les espèces se gênent, les ressources sont partagées par les deux espèces.

<u>Symbiose</u> : Les populations se facilitent la vie mutuellement, les ressources sont partageées par les deux espèces.

Évolutions de populations structurées avec sélection

<u>Cadre</u>: Modélisation d'une épidémie d'une maladie contagieuse

<u>Cadre</u>: Modélisation d'une épidémie d'une maladie contagieuse

Trois populations:

- S(t): individus sains (Suceptibles)
- I(t): individus malades (Infectés)
- R(t): individus morts, ou guéris et immunisés (Rémis)

<u>Cadre</u>: Modélisation d'une épidémie d'une maladie contagieuse

Trois populations:

- S(t): individus sains (Suceptibles)
- I(t): individus malades (Infectés)
- R(t): individus morts, ou guéris et immunisés (Rémis)

Hypothèses de modélisation :

- Contamination proportionnelle au nombre de rencontres entre individus sains et malades
- Les malades ont une certaine probabilité de guérir par unité de temps

<u>Cadre</u>: Modélisation d'une épidémie d'une maladie contagieuse

Trois populations:

- S(t): individus sains (Suceptibles)
- I(t): individus malades (Infectés)
- R(t): individus morts, ou guéris et immunisés (Rémis)

Hypothèses de modélisation :

- Contamination proportionnelle au nombre de rencontres entre individus sains et malades
- Les malades ont une certaine probabilité de guérir par unité de temps Mise en équation

$$\begin{cases} S'(t) = -rSI, \\ I'(t) = rSI - aI, \\ R'(t) = aI. \end{cases} r, a > 0$$

<u>Cadre</u>: Modélisation d'une épidémie d'une maladie contagieuse

Trois populations:

- S(t): individus sains (Suceptibles)
- I(t): individus malades (Infectés)
- R(t): individus morts, ou guéris et immunisés (Rémis)

Hypothèses de modélisation :

- Contamination proportionnelle au nombre de rencontres entre individus sains et malades
- Les malades ont une certaine probabilité de guérir par unité de temps Mise en équation

$$\begin{cases} S'(t) = -rSI, \\ I'(t) = rSI - aI, \\ R'(t) = aI. \end{cases} r, a > 0$$

Résultat : Si $\mathcal{R}_0 = \frac{rS_0}{a} \le 1$ alors $I(t) \to 0$. (pas d'épidémie)

Modèle d'épidémie SIR

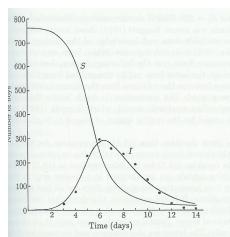
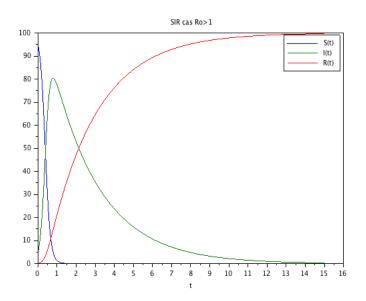
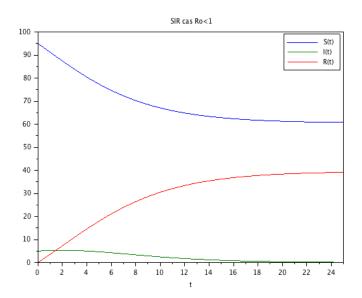


Fig. 19.3. Influenza epidemic data (\bullet) for a boys boarding school as reported in British Medical lournal, 4th March 1978. The continuous curves for the infectives (I) and susceptibles (S) were obtained from a best fit numerical solution of the SIR system (19.1)–(19.3): parameter values N=763, $S_0=762$, $I_0=1$, $\rho=202$, $r=2.18\times 10^{-3}$ /day. The conditions for an epidemic to occur, namely $S_0>\rho$ is clearly satisfied and the epidemic is severe since R/ρ is not small.

Modèle d'épidémie SIR



Modèle d'épidémie SIR



- S(t): individus sains (Suceptibles)
- I(t): individus malades (Infectés)
- ullet R(t): individus morts, ou guéris et immunisés (Rémis)

- S(t): individus sains (Suceptibles)
- I(t): individus malades (Infectés)
- R(t): individus morts, ou guéris et immunisés (Rémis)

Hypothèses de modélisation/vaccin :

- naissances et morts (naturelles) de taux d
- vaccination d'une fraction p des naissances.

- S(t): individus sains (Suceptibles)
- I(t): individus malades (Infectés)
- R(t): individus morts, ou guéris et immunisés (Rémis)

Hypothèses de modélisation/vaccin :

- naissances et morts (naturelles) de taux d
- vaccination d'une fraction p des naissances.

Mise en équation

$$\begin{cases} S'(t) = d((1-p)N - S) - rSI, \\ I'(t) = rSI - (d+a)I, & r, a > 0 \\ R'(t) = dpN + aI - dR. \end{cases}$$

- S(t): individus sains (Suceptibles)
- I(t): individus malades (Infectés)
- R(t): individus morts, ou guéris et immunisés (Rémis)

Hypothèses de modélisation/vaccin :

- naissances et morts (naturelles) de taux d
- vaccination d'une fraction p des naissances.

Mise en équation

$$\begin{cases} S'(t) = d((1-p)N - S) - rSI, \\ I'(t) = rSI - (d+a)I, & r, a > 0 \\ R'(t) = dpN + aI - dR. \end{cases}$$

Impact de la vaccination : $\mathcal{R}_0^{vaccination} = (1-p)\mathcal{R}_0$.

- Équations différentielles ordinaires, rappels, exemples
 - C'est quoi une EDO? Exemples...
 - Vocabulaire / Définitions / Résultats principaux
 - Comportements possibles d'équations différentielles autonomes
- 2 Dynamique des populations
 - Modélisation de la dynamique d'une population
 - Populations en interaction
 - Épidémies
- Simulations Numériques
 - Construction des méthodes numériques
 - Convergence des Méthodes numériques
 - Simulations numériques pour le système de Volterra Lotka

Construction des méthodes numériques

Équation à approcher :
$$y'(t) = f(y(t)), y(0) = y_0.$$

Construction des méthodes numériques

Équation à approcher :
$$y'(t) = f(y(t)), y(0) = y_0.$$

Principe d'approximation :

• Calcul approché sur [0, T] de y(t) aux points $(t_n)_{0 \le n \le N}$ d'une subdivision uniforme de pas h:

$$t_0 = 0, \ t_n = nh, \ t_N = T.$$

- On note y_n une valeur approchée de u au temps t_n .
- L'erreur est d'autant plus petite que h est petit
- Pour calculer y_0, \ldots, y_N il faut $N \sim T/h$ calculs
- \implies Plus h est petit, plus le calcul est précis mai plus il est long!

Construction d'une méthode numérique

Principe d'approximation : intégrons l'EDO entre t_n et t_{n+1}

$$y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} f(y(s))ds$$

Construction d'une méthode numérique

Principe d'approximation : intégrons l'EDO entre t_n et t_{n+1}

$$y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} f(y(s)) ds$$

⇒ Nécessité d'une méthode d'approximation d'intégrale

Principe d'approximation : intégrons l'EDO entre t_n et t_{n+1}

$$y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} f(y(s))ds$$

 \Longrightarrow Nécessité d'une méthode d'approximation d'intégrale Exemples de méthodes numériques :

• Méthode des rectangles à gauche :

$$\int_{t_n}^{t_{n+1}} f(y(s)) ds \simeq hf(y(t_n))$$

Principe d'approximation : intégrons l'EDO entre t_n et t_{n+1}

$$y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} f(y(s))ds$$

 \Longrightarrow Nécessité d'une méthode d'approximation d'intégrale Exemples de méthodes numériques :

Méthode des rectangles à gauche :

$$\int_{t_n}^{t_{n+1}} f(y(s)) ds \simeq hf(y(t_n))$$

 \implies Méthode d'Euler explicite $y_{n+1} = y_n + hf(y_n)$.

Principe d'approximation : intégrons l'EDO entre t_n et t_{n+1}

$$y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} f(y(s))ds$$

 \Longrightarrow Nécessité d'une méthode d'approximation d'intégrale Exemples de méthodes numériques :

• Méthode des rectangles à gauche :

$$\int_{t_n}^{t_{n+1}} f(y(s)) ds \simeq hf(y(t_n))$$

- \implies Méthode d'Euler explicite $y_{n+1} = y_n + hf(y_n)$.
- Méthode des rectangles à droite :

$$\int_{t_n}^{t_{n+1}} f(y(s)) ds \simeq hf(y(t_{n+1}))$$

Principe d'approximation : intégrons l'EDO entre t_n et t_{n+1}

$$y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} f(y(s))ds$$

 \Longrightarrow Nécessité d'une méthode d'approximation d'intégrale Exemples de méthodes numériques :

Méthode des rectangles à gauche :

$$\int_{t_n}^{t_{n+1}} f(y(s)) ds \simeq hf(y(t_n))$$

- \implies Méthode d'Euler explicite $y_{n+1} = y_n + hf(y_n)$.
- Méthode des rectangles à droite :

$$\int_{t_n}^{t_{n+1}} f(y(s)) ds \simeq hf(y(t_{n+1}))$$

 \implies Méthode d'Euler implicite $y_{n+1} = y_n + hf(y_{n+1})$.

• Méthode des trapèzes :

$$\int_{t_n}^{t_{n+1}} f(y(s)) ds \simeq \frac{h}{2} (f(y(t_n)) + f(y(t_{n+1})))$$

Méthode des trapèzes :

$$\int_{t_n}^{t_{n+1}} f(y(s)) ds \simeq \frac{h}{2} (f(y(t_n)) + f(y(t_{n+1})))$$

⇒ Méthode de Heun

$$y_{n+1} = y_n + \frac{h}{2}(f(y_n) + f(y_{n+1})).$$

• Méthode des trapèzes :

$$\int_{t_n}^{t_{n+1}} f(y(s)) ds \simeq \frac{h}{2} (f(y(t_n)) + f(y(t_{n+1})))$$

⇒ Méthode de Heun

$$y_{n+1} = y_n + \frac{h}{2}(f(y_n) + f(y_{n+1})).$$

Problème: méthode implicite

 \implies On approache $f(y_{n+1})$ par $f(y_n + hf(y_n))$.

Méthode de Heun : $y_{n+1} = y_n + \frac{h}{2}(f(y_n) + f(y_n + hf(y_n)))$

Convergence des méthodes numériques

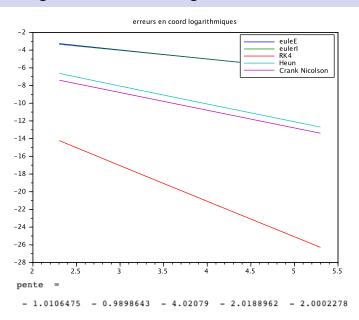
Théorème de convergence

On dit qu'une méthode d'approximation d'EDO qui construit une approximation $(y_n)_{0 \le n \le N}$ de la solution exacte y est convergente d'ordre p si p est le plus grand entier tel que

$$\max_{0\leq n\leq N}|y(t_n)-y_n|\leq Ch^p.$$

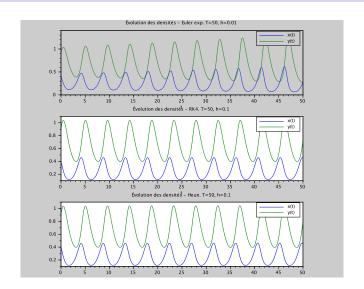
Les méthodes d'Euler explicite et implicite sont convergentes d'ordre 1, la méthode de Heun est convergente d'ordre 2 et on peut fabriquer une méthode convergente d'ordre 4 appelée Runge-Kutta d'orde 4.

Diagrammes de convergence



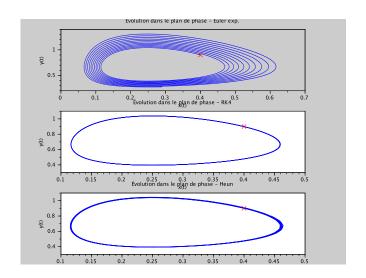
- 1 Équations différentielles ordinaires, rappels, exemples
 - C'est quoi une EDO? Exemples...
 - Vocabulaire / Définitions / Résultats principaux
 - Comportements possibles d'équations différentielles autonomes
- Dynamique des populations
 - Modélisation de la dynamique d'une population
 - Populations en interaction
 - Épidémies
- Simulations Numériques
 - Construction des méthodes numériques
 - Convergence des Méthodes numériques
 - Simulations numériques pour le système de Volterra Lotka

Evolution des populations



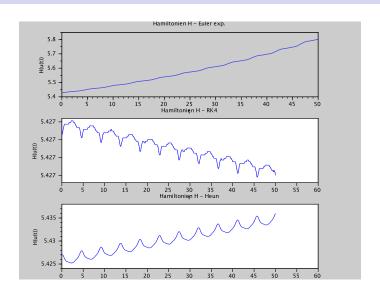
⇒ En apparence pas de différence notable entre les méthodes

Dans le plan de phase



⇒ On voit que les méthodes ne se comportent pas de la même façon.

Conservation de la fonction H



⇒ Importance du choix de la méthode numérique.

:-) Merci de votre attention :-)